Keratinocyte growth factor protects against elastase-induced pulmonary emphysema in mice.
نویسندگان
چکیده
Pulmonary emphysema is characterized by persistent inflammation and progressive alveolar destruction. The keratinocyte growth factor (KGF) favorably influences alveolar maintenance and repair and possesses anti-inflammatory properties. We aimed to determine whether exogenous KGF prevented or corrected elastase-induced pulmonary emphysema in vivo. Treatment with 5 mg x kg(-1) x day(-1) KGF before elastase instillation prevented pulmonary emphysema. This effect was associated with 1) a sharp reduction in bronchoalveolar lavage fluid total protein and inflammatory cell recruitment, 2) a reduction in the pulmonary expression of the chemokines CCL2 (or monocyte chemoattractant protein-1) and CXCL2 (or macrophage inflammatory protein-2alpha) and of the adhesion molecules ICAM-1 and VCAM-1, 3) a reduction in matrix metalloproteinase (MMP)-2 and MMP-9 activity at day 3, and 4) a major reduction in DNA damage detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) in alveolar cells at day 7. Treatment with KGF after elastase instillation had no effect on elastase-induced emphysema despite the conserved expression of the KGF receptor in the lungs of elastase-instilled animals as determined by immunohistochemistry. In vitro, KGF abolished the elastase-induced increase in CCL2, CXCL2, and ICAM-1 mRNA in the MLE-12 murine alveolar epithelial cell line. We conclude that KGF pretreatment protected against elastase-induced pulmonary inflammation, activation of MMPs, alveolar cell DNA damage, and subsequent emphysema in mice.
منابع مشابه
Keratinocyte Growth Factor Gene Electroporation into Skeletal Muscle as a Novel Gene Therapeutic Approach for Elastase-Induced Pulmonary Emphysema in Mice
Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (...
متن کاملProtective effects of bone marrow mononuclear cell therapy on lung and heart in an elastase-induced emphysema model
We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMD...
متن کاملReversal of elastase-induced pulmonary emphysema and promotion of alveolar epithelial cell proliferation by simvastatin in mice.
Besides lowering cholesterol, statins exert multiple effects, such as anti-inflammatory activity and improvement of endothelial cell function. We examined whether simvastatin (SS) protects against the development of elastase-induced pulmonary emphysema in mice by using mean linear intercepts of alveoli (Lm) as a morphometric parameter of emphysema. After injection of intratracheal elastase on d...
متن کاملRecombinant Human Keratinocyte Growth Factor Induces Akt Mediated Cell Survival Progression in Emphysematous Mice.
INTRODUCTION Emphysema has been associated with decreased VEGF and VEGFR-2 expression and the presence of high numbers of apoptotic alveolar cells. Keratinocyte growth factor stimulates VEGF synthesis which in turn confers normal lung structure maintenance via the Akt pathway. In this study the potential role of rHuKGF in the improvement of deregulated Akt mediated cell survival pathway in emph...
متن کاملHuman adipose-derived mesenchymal stem cell spheroids improve recovery in a mouse model of elastase-induced emphysema
Emphysema, a pathologic component of the chronic obstructive pulmonary disease, causes irreversible destruction of lung. Many researchers have reported that mesenchymal stem cells can regenerate lung tissue after emphysema. We evaluated if spheroid human adipose-derived mesenchymal stem cells (ASCs) showed greater regenerative effects than dissociated ASCs in mice with elastase-induced emphysem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 293 5 شماره
صفحات -
تاریخ انتشار 2007